Main Product Characteristics:

$V_{D S s}$	60 V
$R_{D S}($ on $)$	$67 \mathrm{~m} \Omega$ (typ.)
I_{D}	4 A

SOT-223

Marking and Pin Assignments

Schematic Diagram

Features and Benefits:

- Advanced MOSFET process technology
- Special designed for DC-DC and DC-AC converters, load switching and general purpose applications
- Ultra low on-resistance with low gate charge

- Fast switching and reverse body recovery
- $150^{\circ} \mathrm{C}$ operating temperature

Description:

It utilizes the latest processing techniques to achieve the high cell density and reduces the on-resistance with high repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in DC-DC and DC-AC converters and a wide variety of other applications.

Absolute max Rating:

Symbol	Parameter	Max.	Units
I_{D} @ TC $=25^{\circ} \mathrm{C}$	Continuous Drain Current, VGs @ 10V11	4	A
ID @ TC $=100^{\circ} \mathrm{C}$	Continuous Drain Current, VGS @ 10V①	3	
IDM	Pulsed Drain Current(2)	16	
$\mathrm{P}_{\mathrm{D}} @ T \mathrm{C}=25^{\circ} \mathrm{C}$	Power Dissipation(3)	3.3	W
$\mathrm{V}_{\text {DS }}$	Drain-Source Voltage	60	V
V_{GS}	Gate-to-Source Voltage	± 20	V
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy @ L=0.3mH	15	mJ
$\mathrm{I}_{\text {AS }}$	Avalanche Current @ L=0.3mH	10	A
TJ $\mathrm{T}_{\text {sta }}$	Operating Junction and Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Resistance

Symbol	Characterizes	Typ.	Max.	Units
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient (t $\leq 10 \mathrm{~s})$ (4)	-	38	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Junction-to-Ambient (PCB mounted, steady-state) (4)	-	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characterizes $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$	Drain-to-Source breakdown voltage	60	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
$\mathrm{R}_{\text {DS(on) }}$	Static Drain-to-Source on-resistance	-	67	100	$\mathrm{m} \Omega$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=1.5 \mathrm{~A}$
		-	76	115		$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate threshold voltage	1	-	2.5	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
Idss	Drain-to-Source leakage current	-	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	-	10		$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$
IGss	Gate-to-Source forward leakage	-	-	100	nA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$
		-	-	-100		$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$
gfs	Forward Transconductance	1	-	-	S	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$
Q_{g}	Total gate charge	-	12	-	nC	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{DS}}=40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$
Q_{gs}	Gate-to-Source charge	-	3.5	-		
Q_{gd}	Gate-to-Drain("Miller") charge	-	3.7	-		
$\mathrm{t}_{\mathrm{d}(\mathrm{O})}$	Turn-on delay time	-	9.2	-	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{VDS}=25 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=50 \Omega, \quad \mathrm{I}_{\mathrm{D}}=1.2 \mathrm{~A}, \end{aligned}$
tr_{r}	Rise time	-	16.7	-		
$\mathrm{t}_{\text {d(off) }}$	Turn-Off delay time	-	35.4	-		
t_{f}	Fall time	-	8.6	-		
$\mathrm{C}_{\text {iss }}$	Input capacitance	-	582	-	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=30 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$
Coss	Output capacitance	-	49	-		
$\mathrm{C}_{\text {rss }}$	Reverse transfer capacitance	-	36	-		

Source-Drain Ratings and Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
IS	Continuous Source Current (Body Diode)	-	-	4	A	MOSFET symbol showing integral reverse $\mathrm{p}-\mathrm{n}$ junction diode.
I_{SM}	Pulsed Source Current (Body Diode)	-	-	16	A	V
V_{SD}	Diode Forward Voltage	-	-	1.5	V	$\mathrm{I}_{\mathrm{S}}=4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$

Test circuits and Waveforms

EAS Test Circuit:

Gate Charge Test Circuit:

Switching Time Test Circuit:

Notes:

(1)The maximum current rating is limited by bond-wires.
(2)Repetitive rating; pulse width limited by max. junction temperature.
(3)The power dissipation PD is based on max. junction temperature, using junction-to- ambient thermal resistance.
(4)The value of $R_{\theta J A}$ is measured with the device mounted on 1 in 2 FR-4 board with $20 z$. Copper, in a still air environment with $\mathrm{TA}=25^{\circ} \mathrm{C}$

Typical Electrical and Thermal Characteristics

Figure 1. Typical Capacitance vs. Drain-to-Source Voltage

Figure 3. Drain-to-Source Breakdown Voltage vs. Junction Temperature

Figure 2. Gate to source cut-off voltage

Figure 4. Normalized On-Resistance vs. Junction Temperature

Typical Electrical and Thermal Characteristics

Figure 5. Maximum Drain Current vs. Case Temperature

Figure 6. Maximum Effective Transient Thermal Impedance, Junction-to-Case

SSF6072G5

Mechanical Data:

Option 1:

SOT-223 Dimensions (UNIT: mm)

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
A	1.520	1.800	0.060	0.071	
A1	0.000	0.100	0.000	0.004	
A2	1.500	1.700	0.059	0.067	
b	0.660	0.820	0.026	0.032	
c	0.250	0.350	0.010	0.014	
D	6.200	6.400	0.244	0.252	
D1	2.900	3.100	0.114	0.122	
E	3.300	3.700	0.130	0.146	
E1	6.830	7.070	0.269	0.278	
e	2.300		BSC)	$0.091($ BSC $)$	
e1	4.500	4.700	0.177	0.185	
L	0.900	1.150	0.035	0.045	
0	0°	10°	0°	10°	

Notes:

(1) Dimensions are inclusive of plating
(2) Package body sizes exclude mold flash and gate burrs. Mold flash at the non-lead sides should be less than 6 mils.
(3) Dimension L is measured in gauge plane.
(4) Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

SSF6072G5

Mechanical Data:

Option 2:

SOT-223 Dimensions (UNIT: mm)

COHMON DIMENSIONS
(UNITS OF MEASURE=mi)

SYMBOL	MIN	NOU	HAX
A	--	--	1.80
A1	0.00	0.05	0.10
A2	1.50	1.60	1.70
A3	0.85	0.90	0.95
b	0.66	0.70	0.80
b 1	2.96	3.00	3.10
c	0.25	0.30	0.35
D	6.30	6.50	6.70
E	3.30	3.50	3.70
E1	6.80	7.00	7.20
e1	4.40	4.60	4.80
L	0.90	--	1.15
θ	0°	5°	10°
e	2.3 BSC		

ATTENTION:

- Any and all Silikron products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Silikron representative nearest you before using any Silikron products described or contained herein in such applications.
- Silikron assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Silikron products described or contained herein.
- Specifications of any and all Silikron products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment
- Silikron Microelectronics (Suzhou) Co.,Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all Silikron products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Silikron Microelectronics (Suzhou) Co.,Ltd.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. Silikron believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Silikron product that you intend to use.

